翻訳と辞書
Words near each other
・ Modulate (album)
・ Modulate (band)
・ Modulated complex lapped transform
・ Modulated continuous wave
・ Modulated neutron initiator
・ Modulated Noise Reference Unit
・ Modulated ultrasound
・ Modulating retro-reflector
・ Modulation
・ Modulation (disambiguation)
・ Modulation (European Union)
・ Modulation (music)
・ Modulation error ratio
・ Modulation index
・ Modulation order
Modulation space
・ Modulation sphere
・ Modulation transformer
・ Modulational instability
・ Modulator (EP)
・ Modulatory space
・ Modulatrix
・ Module (disambiguation)
・ Module (mathematics)
・ Module (musician)
・ Module file
・ Module homomorphism
・ Module Marketplace
・ Module of covariants
・ Module pattern


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Modulation space : ウィキペディア英語版
Modulation space
Modulation spaces〔Foundations of Time-Frequency Analysis by Karlheinz Gröchenig〕 are a family of Banach spaces defined by the behavior of the short-time Fourier transform with
respect to a test function from the Schwartz space. They were originally proposed by Hans Georg Feichtinger and are recognized to be ''the right kind of function spaces'' for time-frequency analysis. ''Feichtinger's algebra'', while originally introduced as a new Segal algebra,〔H. Feichtinger. "On a new Segal algebra" Monatsh. Math. 92:269–289, 1981.〕 is identical to a certain modulation space and has become a widely used space of test functions for time-frequency analysis.
Modulation spaces are defined as follows. For 1\leq p,q \leq \infty , a non-negative function m(x,\omega) on \mathbb^ and a test function g \in \mathcal(\mathbb^d) , the modulation space M^_m(\mathbb^d)
is defined by
: M^_m(\mathbb^d) = \left\^d)\ :\ \left(\int_\left(\int_ |V_gf(x,\omega)|^p m(x,\omega)^p dx\right)^ d\omega\right)^ < \infty\right\}.
In the above equation, V_gf denotes the short-time Fourier transform of f with respect to g evaluated at (x,\omega) , namely
:V_gf(x,\omega)=\int_f(t)\overlinee^dt=\mathcal^_(\overline\hat(\xi+\omega))(x).
In other words, f\in M^_m(\mathbb^d) is equivalent to V_gf\in L^_m(\mathbb^) . The space M^_m(\mathbb^d) is the same, independent of the test function g \in \mathcal(\mathbb^d) chosen. The canonical choice is a Gaussian.
We also have a Besov-type definition of modulation spaces as follows.〔B.X. Wang, Z.H. Huo, C.C. Hao, and Z.H. Guo. Harmonic Analysis Method
for Nonlinear Evolution Equations. World Scientific, 2011.〕
: M^s_(\mathbb^d) = \left\^d)\ :\ \left(\sum_ \langle k \rangle^ \|\psi_k(D)f\|_p^q\right)^ < \infty\right\}, \langle x\rangle:=|x|+1,
where \ is a suitable unity partition. If m(x,\omega)=\langle \omega\rangle^s, then M^s_=M^_m.
== Feichtinger's algebra ==

For p=q=1 and m(x,\omega) = 1 , the modulation space M^_m(\mathbb^d) = M^1(\mathbb^d) is known by the name Feichtinger's algebra and often denoted by S_0 for being the minimal Segal algebra invariant under time-frequency shifts, i.e. combined translation and modulation operators. M^1(\mathbb^d) is a Banach space embedded in L^1(\mathbb^d) \cap C_0(\mathbb^d) , and is invariant under the Fourier transform. It is for these and more properties that M^1(\mathbb^d) is a natural choice of test function space for time-frequency analysis. Fourier transform \mathcal is an automorphism on M^.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Modulation space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.